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Abstract
We propose a simple test of quantumness which can decide whether for a
given set of accessible experimental data the classical model is insufficient.
Take two observables A,B such that for all states ψ their mean values satisfy
0 � 〈ψ |A|ψ〉 � 〈ψ |B|ψ〉 � 1. If there exists a state φ such that the second
moments fulfill the inequality 〈φ|A2|φ〉 > 〈φ|B2|φ〉 then the system cannot be
described by a classical probabilistic scheme. An example of an optimal triple
(A,B, φ) in the case of a qubit is given.

PACS numbers: 03.65.Ta, 03.67.−a

Although we are confident that the proper theory describing all physical phenomena is
the quantum theory, there are many situations where the classical description in terms of
functions and probability distributions over a suitable ‘phase–space’ is sufficient. In particular,
the systems consisting of a large number of particles and/or emerging in quantum states
characterized by large quantum numbers are supposed to behave classically. The standard
explanation of this fact refers to the stability properties of quantum states with respect to
the interaction with an environment. For large quantum systems the interaction with the
environment is so strong that most quantum states rapidly decay (decohere) and the remaining
manifold of experimentally accessible states can be described by classical models. However,
the actual border between quantum and classical worlds is still a topic of theoretical debate
and experimental efforts [1].

For example, consider a Josephson junction in the regime of parameters corresponding
to the so-called superconducting qubit. Increasing evidence shows that the experimental data
agree with the theoretical model of 2-level quantum system [2]. On the other hand, there are
strong arguments that at least most of the experimental data are consistent with the classical
model of perturbed damped nonlinear oscillator [3]. Another example of systems which are
believed to be useful for quantum information processing but on the other hand might live
in a semiclassical regime are Rydberg atoms [4]. Therefore, it is important to find a simple
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operational (i.e. to a large extent model independent) test which could exclude the classical
model and could be applied to a single system. It is generally believed that the simplest
operational and model independent test of quantumness (or strictly speaking non-classicality)
is based on Bell inequalities [5]. This test is, however, more difficult to realize because it
involves a system composed of two parts which should be well separated to avoid the locality
loophole.

More precisely, our test is designed to exclude the classical algebraic model which
is a special case of the general algebraic model (AM). AM is an abstract formalism in
which (bounded) observables are elements of a certain C∗-algebra A, and states are positive
normalized functionals A � A �→ 〈A〉ρ with 〈A〉ρ denoting the mean value of an observable
A in a state ρ. The algebraic structure is encoded into the following assumptions:

(a) for any two observables identified with elements A,B ∈ A there exists an observable
which can be identified with A + B,

(b) the kth moment of the observable A is given by 〈Ak〉 where Ak is a k-power of A in the
algebra A.

For all practical purposes we can restrict ourselves to two extreme cases: the first
being a classical AM where A is an algebra of functions on a certain ‘phase–space’ with
〈A〉ρ = ∫

A(x)ρ(x) dx, where ρ(x) is some probability distribution, and the second being a
finite quantum AM in which A is an algebra of matrices and 〈A〉ρ = Tr(ρA), where ρ is some
density matrix. For any pair of observables A,B ∈ A, the order relation A � B means that
〈A〉ρ � 〈B〉ρ for all states ρ (in fact, it is enough to take all pure states).

One should stress that the proposed simple test does not exclude the general hidden
variable models (HV) which do not possess an algebraic structure superimposed on the set
of observables (see an exhaustive discussion of HV models in [6]). The examples of such
models, for which the similar questions of ‘classicality’ have been discussed, were those based
on unsharp measurements realized by POVMs [7], experimental events described by effects
[8] or quantum logic [9]. As our aim is not a discussion of an ultimate model of Nature but
rather a practical test which could eliminate a well-defined classical theory for some specific
systems the restriction to AM seems reasonable.

The following result can be proved within the general formalism of the AM [10].

Theorem. The following implication

0 � A � B �⇒ A2 � B2 (1)

always holds if and only if the algebra A is commutative, i.e. isomorphic to the algebra of
continuous functions on a certain compact space.

As a consequence of the above theorem, for any quantum system there exists a pair of
observables (identified with matrices) (A,B) such that the eigenvalues of A,B and B −A are
nonnegative but the matrix B2 − A2 possesses at least one negative eigenvalue. One should
add that instead of the square function A → A2 one can take any non-operator monotone
function what might be useful for the applications.

To apply this mathematical result we assume that the experimental situation can be
described in terms of the set Sexp of accessible initial states of a certain physical system and
the set of accessible measurements (observables) Aexp. For any observable A ∈ Aexp and
any state ρ ∈ Sexp we can extract (by repeating measurements on the fixed initial state ρ) the
statistics of the measurement outcomes. Therefore, if A ∈ Aexp then for any continuous real
function F,F (A) ∈ Aexp, and can be measured by the same apparatus as A.

We say that the pair (A,S), where A is a C∗-algebra and S is a set of linear, positive and
normalized functionals on A, is a minimal algebraic model for our set of experimental data if:
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(1) we can identify Aexp with a subset of A and Sexp with a subset of S, such that the
corresponding mean values reproduce experimental data,

(2) for any pair of observables A,B ∈ Aexp , 〈A〉ψ � 〈B〉ψ for arbitrary ψ ∈ Sexp implies
〈A〉φ � 〈B〉φ for arbitrary φ ∈ S.

According to the definition above, if we can find two accessible observables A and B such
that for all accessible states 0 � 〈A〉 � 〈B〉 and if we can prepare a certain state ρ satisfying
〈A2〉ρ > 〈B2〉ρ , then we can say that the set of experimental data does not admit a minimal
classical model.

One could still argue that there may exist a non-minimal classical AM describing the
data (‘minimality loophole’). In this case, the classical observable B − A possesses negative
outcomes (values of the function) which are not detectable by the differences of averages
〈B〉 − 〈A〉. This means that the accessible states (probability distributions) are too coarse
grained in comparison to the accessible observables. This is not a reasonable assumption as
we typically use the same technology for state preparation and for observable measurements.
Hence, we expect a similar resolution for both types of processes.

In practical situations, we would like to test a definite quantum model for which we
have some arguments for how to associate observables and states with definite experimental
procedures. Therefore, instead of a random guess it is useful to find the examples of triples
(A,B, φ) which maximally violate classicality and can be used to optimally design the
experimental setting. This can easily be achieved in the case of a qubit which is the most
important example for quantum information.

We search for a pair of 2 × 2 matrices A,B and a pure state φ which satisfy

0 � A � B � I, 〈A2〉φ ≡ 〈φ|A2|φ〉 > 〈B2〉φ ≡ 〈φ|B2|φ〉, (2)

where the observables A and B are normalized in such a way that their upper bound is the
identity. Such a triple is given as an example as

A =
(

a1 ξ

ξ ∗ a2

)
, B =

(
1 0
0 b

)
, φ =

(
α

β

)
. (3)

The matrix B is chosen to be diagonal, with the identity as its upper bound, and this choice of
basis can be made since the solution to this problem is unique up to unitary equivalence. From
the upper bound it can be seen that both eigenvalues of B should be at most 1, and to maximize
the violation of (1) one of the eigenvalues is chosen to be fixed at 1. The usual condition
|α|2 + |β|2 = 1 applies for the parameters of the state φ. The positivity of the observables A,B

and (B −A) is ensured by the requirement that both their diagonal elements and determinants
are positive. These conditions are expressed below as

0 � b � 1, 0 � a1 � 1, (4)

and

0 � a1a2 − |ξ |2, 0 � (1 − a1)(b − a2) − |ξ |2. (5)

The lower eigenvalue of the matrix (B2 − A2) is found to be

1
2

(
b2 + 1 − a2

1 − a2
2 − 2|ξ |2 −

√(
b2 − 1 + a2

1 − a2
2

)2
+ 4(a1 + a2)2|ξ |2). (6)

A numerical technique is used to calculate the maximal violation of the inequality (1) since we
are unable to find an exact solution to this optimization problem. In finding the optimal set of
parameters a1, a2, b and real ξ , it can be seen that the maximal violation of the inequality (1)
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arises when conditions (5) are equalities rather than inequalities. This reduces the problem
from four unknowns to two, and the triplet can then be written as

A =
(

a1
√

a1a2√
a1a2 a2

)
, B =

(
1 0
0 a2

1−a1

)
, φ =

(
α

β

)
. (7)

The parameters which result in one of the eigenvalues of (B2 − A2) attaining it’s most
negative value, and thus maximally violating inequality (1), while still remaining within the
constraints give us the triplet

A =
(

0.724 0.249
0.249 0.0854

)
, B =

(
1 0
0 0.309

)
, φ =

(
0.391
0.920

)
. (8)

In this example, the value of 〈φ|B|φ〉 − 〈φ|A|φ〉 is 0.0528, a positive value, whereas it can be
seen that 〈φ|B2|φ〉− 〈φ|A2|φ〉 = −0.0590 which clearly demonstrates the quantum nature of
this example. The eigenvectors and corresponding eigenvalues of A using these parameters is
calculated to be

A

(
0.946
0.325

)
= 0.809

(
0.946
0.325

)
(9)

and

A

(−0.325
0.946

)
=

(
0
0

)
. (10)

To give a concrete example, one can apply these results to the polarization of a single
photon which could be the first feasibility test of our method. Choosing a polarization basis as
|H 〉, |V 〉 and attributing the values 1 to |H 〉 and 0.309 to |V 〉 we obtain the observable B. The
observable A corresponds to a rotated polarization basis |H ′〉 = cos(19◦)|H 〉 + sin(19◦)|V 〉,
|V ′〉 = − sin(19◦)|H 〉 + cos(19◦)|V 〉 with the eigenvalues 0.809 and 0, respectively. The
maximal violation of classicality should be observed in the neighborhood of the state
|φ〉 = cos(67◦)|H 〉 + sin(67◦)|V 〉. Obviously, more interesting experiments could be done for
systems with a still questionable quantum character [11].
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